We need your consent to use the individual data so that you can see information about your interests, among other things. Click "OK" to give your consent.
Standard Practice for Guarded-Hot-Plate Design Using Circular Line-Heat Sources
Translate name
STANDARD published on 1.3.2019
Designation standards: ASTM C1043-19
Note: WITHDRAWN
Publication date standards: 1.3.2019
SKU: NS-939026
The number of pages: 16
Approximate weight : 48 g (0.11 lbs)
Country: American technical standard
Category: Technical standards ASTM
Keywords:
guarded hot plate apparatus, heat flow, line source heater, steady state, thermal conductivity , thermal insulation, thermal resistance,, ICS Number Code 17.200.10 (Heat. Calorimetry)
Significance and Use | ||||||||||
4.1 This practice describes the design of a guarded hot plate with circular line-heat sources and provides guidance in determining the mean temperature of the meter plate. It provides information and calculation procedures for: (1) control of edge heat loss or gain (Annex A1); (2) location and installation of line-heat sources (Annex A2); (4.2 A circular guarded hot plate with one or more line-heat sources is amenable to mathematical analysis so that the mean surface temperature is calculated from the measured power input and the measured temperature(s) at one or more known locations. Further, a circular plate geometry simplifies the mathematical analysis of errors resulting from heat gains or losses at the edges of the specimens (see Refs (10, 11)). 4.3 The line-heat source(s) is (are) placed in the meter plate at a prescribed radius such that the temperature at the outer edge of the meter plate is equal to the mean surface temperature over the meter area. Thus, the determination of the mean temperature of the meter plate is accomplished with a small number of temperature sensors placed near the gap. 4.4 A guarded hot plate with one or more line-heat sources will have a radial temperature variation, with the maximum temperature differences being quite small compared to the average temperature drop across the specimens. Provided guarding is adequate, only the mean surface temperature of the meter plate enters into calculations of thermal transmission properties. 4.5 Care shall be taken to design a circular line-heat-source guarded hot plate so that the electric-current leads to each heater either do not significantly alter the temperature distributions in the meter and guard plates or else affect these temperature distributions in a known way so that appropriate corrections are applied. 4.6 The use of one or a few circular line-heat sources in a guarded hot plate simplifies construction and repair. For room-temperature operation, the plates are typically of one-piece metal construction and thus are easily fabricated to the required thickness and flatness. The design of the gap is also simplified, relative to gap designs for distributed-heat-source hot plates. 4.7 In the single-sided mode of operation (see Practice C1044), the symmetry of the line-heat-source design in the axial direction minimizes errors due to undesired heat flow across the gap. |
||||||||||
1. Scope | ||||||||||
1.1 This practice covers the design of a circular line-heat-source guarded hot plate for use in accordance with Test Method C177. Note 1: Test Method C177
describes the guarded-hot-plate apparatus and the application of
such equipment for determining thermal transmission properties of
flat-slab specimens. In principle, the test method includes
apparatus designed with guarded hot plates having either
distributed- or line-heat sources.
1.2 The guarded hot plate with circular line-heat sources is a design in which the meter and guard plates are circular plates having a relatively small number of heaters, each embedded along a circular path at a fixed radius. In operation, the heat from each line-heat source flows radially into the plate and is transmitted axially through the test specimens. 1.3 The meter and guard plates are fabricated from a continuous piece of thermally conductive material. The plates are made sufficiently thick that, for typical specimen thermal conductances, the radial and axial temperature variations in the guarded hot plate are quite small. By proper location of the line-heat source(s), the temperature at the edge of the meter plate is made equal to the mean temperature of the meter plate, thus facilitating temperature measurements and thermal guarding. 1.4 The line-heat-source guarded hot plate has been used successfully over a mean temperature range from − 10 to + 65°C, with circular metal plates and a single line-heat source in the meter plate. The chronological development of the design of circular line-heat-source guarded hot plates is given in Refs Note 2: Detailed drawings and descriptions for the construction of two line-heat-source guarded-hot-plate apparatuses are available in the adjunct.3 1.5 This practice does not preclude (1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. |
||||||||||
2. Referenced Documents | ||||||||||
|
Do you want to make sure you use only the valid technical standards?
We can offer you a solution which will provide you a monthly overview concerning the updating of standards which you use.
Would you like to know more? Look at this page.
Latest update: 2025-01-21 (Number of items: 2 220 867)
© Copyright 2025 NORMSERVIS s.r.o.