We need your consent to use the individual data so that you can see information about your interests, among other things. Click "OK" to give your consent.
Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature
Translate name
STANDARD published on 1.1.2023
Designation standards: ASTM C1161-18(2023)
Publication date standards: 1.1.2023
SKU: NS-1103190
The number of pages: 19
Approximate weight : 57 g (0.13 lbs)
Country: American technical standard
Category: Technical standards ASTM
Keywords:
advanced ceramics, flexural strength, four-point flexure, three-point flexure,, ICS Number Code 81.060.20 (Ceramic products)
Significance and Use | ||||||||||||
4.1?This test method may be used for material development, quality control, characterization, and design data generation purposes. This test method is intended to be used with ceramics whose strength is 50 MPa (~7 ksi) or greater. 4.2?The flexure stress is computed based on simple beam theory with assumptions that the material is isotropic and homogeneous, the moduli of elasticity in tension and compression are identical, and the material is linearly elastic. The average grain size should be no greater than one-fiftieth of the beam thickness. The homogeneity and isotropy assumption in the standard rule out the use of this test for continuous fiber-reinforced ceramics. 4.3?Flexural strength of a group of test specimens is influenced by several parameters associated with the test procedure. Such factors include the loading rate, test environment, specimen size, specimen preparation, and test fixtures. Specimen sizes and fixtures were chosen to provide a balance between practical configurations and resulting errors, as discussed in MIL-STD-1942(MR) and Refs (1, 2).4 Specific fixture and specimen configurations were designated in order to permit ready comparison of data without the need for Weibull-size scaling. 4.4?The flexural strength of a ceramic material is dependent on both its inherent resistance to fracture and the size and severity of flaws. Variations in these cause a natural scatter in test results for a sample of test specimens. Fractographic analysis of fracture surfaces, although beyond the scope of this standard, is highly recommended for all purposes, especially if the data will be used for design as discussed in MIL-STD-1942(MR) and Refs (2-5) and Practices C1322 and C1239. 4.5?The three-point test configuration exposes only a very small portion of the specimen to the maximum stress. Therefore, three-point flexural strengths are likely to be much greater than four-point flexural strengths. Three-point flexure has some advantages. It uses simpler test fixtures, it is easier to adapt to high temperature and fracture toughness testing, and it is sometimes helpful in Weibull statistical studies. However, four-point flexure is preferred and recommended for most characterization purposes. 4.6?This method determines the flexural strength at ambient temperature and environmental conditions. The flexural strength under ambient conditions may or may not necessarily be the inert flexural strength. Note 7:?time dependent effects may be minimized through the
use of inert testing atmosphere such as dry nitrogen gas, oil, or
vacuum. Alternatively, testing rates faster than specified in this
standard may be used. Oxide ceramics, glasses, and ceramics
containing boundary phase glass are susceptible to slow crack
growth even at room temperature. Water, either in the form of
liquid or as humidity in air, can have a significant effect, even
at the rates specified in this standard. On the other hand, many
ceramics such as boron carbide, silicon carbide, aluminum nitride,
and many silicon nitrides have no sensitivity to slow crack growth
at room temperature and the flexural strength in laboratory ambient
conditions is the inert flexural strength.
|
||||||||||||
1. Scope | ||||||||||||
1.1?This test method covers the determination of flexural strength of advanced ceramic materials at ambient temperature. Four-point-1/4-point and three-point loadings with prescribed spans are the standard as shown in Fig. 1. Rectangular specimens of prescribed cross-section sizes are used with specified features in prescribed specimen-fixture combinations. Test specimens may be 3 by 4 by 45 to 50 mm in size that are tested on 40-mm outer span four-point or three-point fixtures. Alternatively, test specimens and fixture spans half or twice these sizes may be used. The method permits testing of machined or as-fired test specimens. Several options for machining preparation are included: application matched machining, customary procedure, or a specified standard procedure. This method describes the apparatus, specimen requirements, test procedure, calculations, and reporting requirements. The test method is applicable to monolithic or particulate- or whisker-reinforced ceramics. It may also be used for glasses. It is not applicable to continuous fiber-reinforced ceramic composites. 1.2?The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.3?This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.4?This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. |
||||||||||||
2. Referenced Documents | ||||||||||||
|
Do you want to make sure you use only the valid technical standards?
We can offer you a solution which will provide you a monthly overview concerning the updating of standards which you use.
Would you like to know more? Look at this page.
Latest update: 2024-11-22 (Number of items: 2 206 568)
© Copyright 2024 NORMSERVIS s.r.o.