We need your consent to use the individual data so that you can see information about your interests, among other things. Click "OK" to give your consent.
Standard Guide for Making Quality Nondestructive Assay Measurements (Withdrawn 2018)
Automatically translated name:
Standard Guide for Making Quality Nondestructive Assay Measurements
STANDARD published on 1.6.2009
Designation standards: ASTM C1592/C1592M-09
Note: WITHDRAWN
Publication date standards: 1.6.2009
SKU: NS-11951
The number of pages: 11
Approximate weight : 33 g (0.07 lbs)
Country: American technical standard
Category: Technical standards ASTM
Keywords:
Neutron moderators, Nondestructive evaluation (NDE), Passive neutron coincidence counting, Secular equillibrium, Total measurement uncertainty (TMU), ICS Number Code 27.120.30 (Fissile materials and nuclear fuel technology)
Significance and Use | ||||||||||||||||||||||||||||||
NDA measurement practices aimed at achieving quality results are described in this guide. The application of the material provided in this guide should be determined on a case by case basis. Not all elements are required for all applications. Nondestructive assay measurements are typically performed when the items measured or goals of the measurement program favor NDA over destructive analysis. NDA is typically favored when collecting a representative sample of the item is difficult or impractical (for example, scrap and waste items), personnel exposure would be significant, spread of contamination from sampling would occur, generation of secondary waste must be minimized, the weight and/or tare weight of the item cannot easily be determined (for example, in place process equipment), rapid turn around of the measurement results is needed, or the NDA measurement is significantly less expensive than the equivalent destructive analysis. The principles provided in this guide should be used to determine which type of measurement is best suited to the measurement application. This determination involves consideration of the characteristics of the items to be measured, as well as the goals of the measurement program. This guide applies to the suite of NDA instruments and measurement methods, many of which are described in detail in Refs (1) and (2). A partial listing of measurement methods and applicable use references is provided in 5.6.1. It is incumbent upon the user to seek additional guidance within ASTM method-specific standards, as this guide does not take precedence. Additional information on specific methods is best found in technical meeting transactions, journals, commercial application notes, and NRC/DOE publications. This guide may be applied to many situations spanning the range of nuclear materials from product through waste. Typical applications include: the measurement and characterization of transuranic wastes, low-level wastes, and mixed wastes; the determination of radioactivity below some regulatory threshold, estimated for non-detected radionuclides; the measurement of safeguarded nuclear materials; shipper receiver confirmation; confirmation of nuclear material inventory; support of nuclear criticality safety evaluations; measurement of holdup of special nuclear material in process systems; support of decontamination and decommissioning activities; and in-situ analyses of facilities, glove-boxes, hot cells, and the environment prior to and following demolition. When applied to measurement of waste, this guide should be used in conjunction with a waste management plan that segregates the contents of assay items into material categories according to some or all of the following criteria: bulk density of the waste, chemical forms of the radioactive constituents and matrix, (α, n) neutron intensity, hydrogen (moderator) and absorber content, thickness of fissile mass(es), and the assay item container size and composition. Each matrix may require a different set of calibration standards and may have different mass calibration limits. The effect on the quality of the assay (that is, maximizing precision and minimizing bias) can significantly depend on the degree of adherence to this waste management plan. This guide addresses elements of quality measurement practice such as; nuclear measurement instrumentation and its care; common hazards; facility readiness and requirements to support the NDA equipment; project scoping, requirements and objectives; assembly and deployment of the instrument; calibration and test; computational modeling to augment physical testing; measurement validation; preventive maintenance; and the measurement control program. |
||||||||||||||||||||||||||||||
1. Scope | ||||||||||||||||||||||||||||||
1.1 This guide is a compendium of Quality Measurement Practices for performing measurements of radioactive material using nondestructive assay (NDA) instruments. The primary purpose of the guide is to assist users in arriving at quality NDA results, that is, results that satisfy the end user’s needs. This is accomplished by providing an acceptable and uniform basis for the collection, analysis, comparison, and application of data. The recommendations are not compulsory or prerequisites to achieving quality NDA measurements, but are considered contributory in most areas. 1.2 This guide applies to the use of NDA instrumentation for the measurement of nuclear materials by the observation of spontaneous or stimulated nuclear radiations, including photons, neutrons, or the flow of heat. Recommended calibration, operating, and assurance methods represent guiding principles based on current NDA technology. The diversity of industry-wide nuclear materials measurement applications and instrumentation precludes discussion of specific measurement situations. As a result, compliance with practices recommended in this guide must be based on a thorough understanding of contributing variables and performance requirements of the specific measurement application. 1.3 Selection of the best instrument for a given measurement application and advice on the use of this instrument must be provided by a qualified NDA professional following guidance provided in Guide C 1490. This guide is to be used as a reference, and to supplement the critical thinking, professional skill, expert judgment, and experimental test and verification needed to ensure that the instrumentation and methods have been properly implemented. 1.4 The intended audience for this guide includes but is not limited to Management, Auditor Support, NDA Qualified Instrument Operators, NDA Technical Specialists, and NDA Professionals. 1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. |
||||||||||||||||||||||||||||||
2. Referenced Documents | ||||||||||||||||||||||||||||||
|
Do you want to make sure you use only the valid technical standards?
We can offer you a solution which will provide you a monthly overview concerning the updating of standards which you use.
Would you like to know more? Look at this page.
Latest update: 2024-12-23 (Number of items: 2 217 157)
© Copyright 2024 NORMSERVIS s.r.o.