We need your consent to use the individual data so that you can see information about your interests, among other things. Click "OK" to give your consent.
Standard Test Methods for Measurement of Hydraulic Conductivity of Coarse-Grained Soils
Translate name
STANDARD published on 15.3.2022
Designation standards: ASTM D2434-22
Publication date standards: 15.3.2022
SKU: NS-1053953
The number of pages: 16
Approximate weight : 48 g (0.11 lbs)
Country: American technical standard
Category: Technical standards ASTM
Earthworks. Excavations. Foundation construction. Underground works
This test method covers the determination of the coefficient of permeability by a constant-head method for the laminar flow of water through granular soils. The procedure is to establish representative values of the coefficient of permeability of granular soils that may occur in natural deposits as placed in embankments, or when used as base courses under pavements. The different apparatus used in determining the granular soil permeability are presented. The methods in preparing the test specimen are presented in details. The testing and calculation procedure for granular soil permeability determination are presented.
Keywords:
constant head, gravel, hydraulic conductivity, permeameter, sand,, ICS Number Code 93.020 (Earthworks. Excavations. Foundation construction. Underground works)
Significance and Use | ||||||
5.1?These test methods are used to measure one-dimensional vertical flow of water through initially saturated coarse-grained, pervious (that is, free-draining) soils under an applied hydraulic gradient. Hydraulic conductivity of coarse-grained soils is used in various civil engineering applications. These test methods are suitable for determination of hydraulic conductivity for soils with k > 107 m/s. Note 2:?Clean coarse-grained soils that are classified using
Practice D2487-17 as GP, GW,
SP, and SW can be tested using these test methods. Depending on
fraction and characteristics of fine-grained particles present in
soils, these test methods may be suitable for testing other soil
types with fines content greater than 5 % (for example, GP-GC,
SP-SM).
5.2?Coarse-grained soils are to be tested at a void ratio representative of field conditions. For engineered fills, compaction specification can be used to provide target test conditions, whereas for natural soils, field testing of in-situ density can be used to provide target test conditions. 5.3?Use of a dual-ring permeameter is included in these test methods in addition to a single-ring permeameter for the rigid wall test apparatus. The dual-ring permeameter allows for reducing potential adverse effects of sidewall leakage on measured hydraulic conductivity of the test specimens. The use of a plate at the outflow end of the specimen that contains a ring with a diameter smaller than the diameter of the permeameter and the presence of two outflow ports (one from the inner ring, one from the annular space between the inner ring and the permeameter wall) allows for separating the flow from the central region of the test specimen from the flow near the sidewall of the permeameter. Note 3:?Sidewall leakage has been reported to have significant
influence on flow conditions for coarse-grained soils due to
presence of larger voids at the boundary and higher void ratio in
this region of the specimen. Three modifications that have been
used to reduce this effect in rigid wall permeameters include:
5.4?Use
of a flexible wall permeameter is included in these test methods in
addition to the rigid wall permeameters. The flexible wall
permeameter reduces potential adverse effects of sidewall leakage
on measured hydraulic conductivity of the test specimens and allows
for application of hydrostatic confining stress conditions on the
specimen during the hydraulic conductivity test. Confining stress
allows for representing field conditions (that is, simulating
stress states in the subgrade that may affect values of
5.5?Darcy's law is assumed to apply to the
test conditions, flow is assumed to be laminar (see Note 4), and the hydraulic conductivity
is assumed to be considered independent of hydraulic gradient. The
validity of these assumptions may be evaluated by measuring the
hydraulic conductivity of a specimen at three different hydraulic
gradients. The discharge velocity (v = k ? i) is plotted against the applied
hydraulic gradient. If the resulting relationship is linear and the
measured hydraulic conductivity values are similar (that is, within
25 %), then these assumptions are considered valid.
Note 4:?Previous studies suggest that the limit between
turbulent flow and laminar flow for soils occurs for Reynolds
numbers between 1 and 10 Provisions are provided in (3) for establishing equivalent
particle diameter for use in this equation for nonuniform particle
size distributions and nonspherical particles.
Note 5:?Using sufficiently low gradients has been demonstrated
to be important for obtaining representative results. Hydraulic
gradients less than 0.05 have been reported (4). Using a long test specimen (on
the order of 1.5 m) has been reported as an effective method for
achieving appropriately low hydraulic gradients for materials with
Note 6:?The quality of the result produced by this standard is
dependent of the competence of the personnel performing it and the
suitability of the equipment and facilities used. Agencies that
meet the criteria of Practice D3740 are generally considered capable of
competent and objective testing, sampling, inspection, etc. Users
of this standard are cautioned that compliance with Practice
D3740 does not in itself
result in reliable values. Reliable results depend on many factors;
Practice D3740 provides a
means of evaluating some of those factors.
|
||||||
1. Scope | ||||||
1.1?These test methods cover laboratory measurement of the hydraulic conductivity (also referred to as 1.2?This standard describes two methods (A and B) for determining hydraulic conductivity of coarse-grained soils. Method A incorporates use of a rigid wall permeameter and Method B incorporates the use of a flexible wall permeameter. A single- or dual-ring rigid wall permeameter may be used in Method A. A dual-ring permeameter may be preferred over a single-ring permeameter when adverse effects from short-circuiting of permeant water along the sidewalls of the permeameter (that is, prevent sidewall leakage) are suspected by the user of this standard. 1.3?The test methods are used under constant head conditions. 1.4?The test methods are used under saturated soil conditions. 1.5?Water is used to permeate the test specimen with these test methods. 1.6?UnitsThe values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. Note 1:?Hydraulic conductivity has traditionally been reported
in cm/s in the US, even though the official SI unit for hydraulic
conductivity is m/s.
1.7?The observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026. 1.8?This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.9?This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. |
||||||
2. Referenced Documents | ||||||
|
Do you want to make sure you use only the valid technical standards?
We can offer you a solution which will provide you a monthly overview concerning the updating of standards which you use.
Would you like to know more? Look at this page.
Latest update: 2024-12-22 (Number of items: 2 217 000)
© Copyright 2024 NORMSERVIS s.r.o.