We need your consent to use the individual data so that you can see information about your interests, among other things. Click "OK" to give your consent.
Standard Test Method for Torsional Ring Shear Test to Determine Drained Residual Shear Strength of Fine-Grained Soils (Includes all amendments and changes 1/27/2022).
Translate name
STANDARD published on 1.9.2021
Designation standards: ASTM D6467-21e1
Publication date standards: 1.9.2021
SKU: NS-1048421
The number of pages: 8
Approximate weight : 24 g (0.05 lbs)
Country: American technical standard
Category: Technical standards ASTM
Keywords:
consolidated, drained test conditions, multi-stage test, reconstituted specimens, residual shear strength, ring-shear test, single stage test, torsional ring shear test ,, ICS Number Code 13.080.20 (Physical properties of soil)
Significance and Use | ||||||||||||||||||||
5.1?The ring shear test is suited to the relatively rapid determination of drained residual shear strength because of the short drainage path through the thin specimen, the constant cross-sectional area of the shear surface during shear, unlimited rotational displacement in one direction, and the capability of testing one specimen under different effective normal stresses to obtain clay particles that are oriented parallel to the direction of shear to obtain residual shear strength envelope. 5.2?The apparatus allows a reconstituted specimen to be overconsolidated and presheared prior to drained shearing. Overconsolidation and preshearing of the reconstituted specimen significantly reduces the horizontal displacement required to reach a residual condition, and therefore, reduces soil extrusion, wall friction, and other problems (Stark and Eid, 1993)3. This simulates a preexisting shear surface along which the drained residual strength can be mobilized. 5.3?The ring shear test specimen is annular so the angular displacement differs from the inner edge to the outer edge. At the residual condition, the shear strength is constant across the specimen so the difference in shear stress between the inner and outer edges of the specimen is negligible. Note 1:?Notwithstanding the statements on precision and bias
contained in this test method: The precision of this test method is
dependent on the competence of the personnel performing it and the
suitability of the equipment and facilities used. Agencies that
meet the criteria of Practice D3740 are generally considered capable of
competent testing. Users of this test method are cautioned that
compliance with Practice D3740 does not ensure reliable testing.
Reliable testing depends on several factors; Practice D3740 provides a means of evaluating some
of those factors.
|
||||||||||||||||||||
1. Scope | ||||||||||||||||||||
1.1?Fine-grained soils in this Test Method are restricted to soils containing no more than 15 % fine sand (100 % passing the 425 ?m (No. 40) sieve and no more than 15 % retained on the 75 ?m (No. 200) sieve). 1.2?This test method provides a procedure for performing a torsional ring shear test under a drained condition to determine the residual shear strength of fine-grained soils. This test method is performed by shearing a reconstituted, overconsolidated, presheared specimen at a controlled displacement rate until the constant drained shear resistance is established on a single shear surface determined by the configuration of the apparatus. 1.3?In this test, the specimen rotates in one direction until the constant or residual shear resistance is established. The amount of rotation is converted to displacement using the average radius of the specimen and multiplying it by numbers of degrees traveled and 0.0174. 1.4?An intact specimen or a specimen with a natural shear surface can be used for testing. However, obtaining a natural slip surface specimen, determining the direction of field shearing, and trimming and aligning the usually non-horizontal shear surface in the ring shear apparatus is difficult. As a result, this test method focuses on the use of a reconstituted specimen to determine the residual strength. An unlimited amount of continuous shear displacement can be achieved to obtain a residual strength condition in a ring shear device. 1.5?A shear stress-displacement relationship may be obtained from this test method. However, a shear stress-strain relationship or any associated quantity, such as modulus, cannot be determined from this test method because the height of the shear zone unknown, so an accurate or representative shear strain cannot be determined. 1.6?The selection of effective normal stresses and determination of the shear strength parameters for design analyses are the responsibility of the professional or office requesting the test. Generally, three or more effective normal stresses are applied to a test specimen in a multi-stage test or a new specimen can be used for each effective normal stress to determine the drained residual failure envelope. 1.7?The values stated in SI units are to be regarded as standard. The values given in parentheses are provided for information only and are not considered standard. The values given in parentheses are mathematical conversions to inch-pound units. Reporting of test results in units other than SI shall not be regarded as nonconformance with this standard. 1.8?All measured and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026 unless superseded by this standard. 1.8.1?The procedures used to specify how data are collected/recorded or calculated in the standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the users objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design. 1.9?This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.10?This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. |
||||||||||||||||||||
2. Referenced Documents | ||||||||||||||||||||
|
Do you want to make sure you use only the valid technical standards?
We can offer you a solution which will provide you a monthly overview concerning the updating of standards which you use.
Would you like to know more? Look at this page.
Latest update: 2024-12-23 (Number of items: 2 217 157)
© Copyright 2024 NORMSERVIS s.r.o.