We need your consent to use the individual data so that you can see information about your interests, among other things. Click "OK" to give your consent.
Standard Test Method for Shear Properties of Composite Materials by V-Notched Rail Shear Method (Includes all amendments and changes 3/24/2021).
Translate name
STANDARD published on 1.4.2020
Designation standards: ASTM D7078/D7078M-20e1
Publication date standards: 1.4.2020
SKU: NS-1020825
The number of pages: 15
Approximate weight : 45 g (0.10 lbs)
Country: American technical standard
Category: Technical standards ASTM
Keywords:
composite materials, in-plane shear, interlaminar shear, shear modulus, shear properties, shear strength, shear testing,, ICS Number Code 83.120 (Reinforced plastics),83.140.20 (Laminated sheets)
Adjunct to D7078 -- D V-Notched Rail Shear Fixture Machining Drawings
Selected format:Significance and Use | ||||||||||||||||||||||||||||||||||||||||||||
5.1?This shear test is designed to produce shear property data for material specifications, research and development, quality assurance, and structural design and analysis. Either in-plane or interlaminar shear properties may be evaluated, depending upon the orientation of the material coordinate system relative to the loading axis. Factors that influence the shear response and should therefore be reported include: material, methods of material preparation and lay-up, specimen stacking sequence, specimen preparation, specimen conditioning, environment of testing, specimen alignment and gripping, speed of testing, time at temperature, void content, and volume percent reinforcement. 5.2?In anisotropic materials, properties may be obtained in any of the six possible shear planes by orienting the testing plane of the specimen with the desired material plane (1-2 or 2-1, 1-3 or 3-1, 2-3 or 3-2). Only a single shear plane may be evaluated for any given specimen. Properties, in the test direction, which may be obtained from this test method, include the following: 5.2.1?Shear stress versus engineering shear strain response, 5.2.2?Ultimate shear strength, 5.2.3?Ultimate engineering shear strain, and 5.2.4?Shear chord modulus of elasticity. |
||||||||||||||||||||||||||||||||||||||||||||
1. Scope | ||||||||||||||||||||||||||||||||||||||||||||
1.1?This test method covers the determination of the shear properties of high-modulus fiber-reinforced composite materials by clamping the ends of a V-notched specimen between two pairs of loading rails. When loaded in tension, the rails introduce shear forces into the specimen through the specimen faces. In comparison, the specimen of Test Method D5379/D5379M is loaded through its top and bottom edges. Face loading allows higher shear forces to be applied to the specimen, if required. Additionally, the present test method utilizes a specimen with a larger gage section than the V-notched specimen of Test Method D5379/D5379M. In both test methods, the use of a V-notched specimen increases the gage section shear stresses in relation to the shear stresses in the vicinity of the grips, thus localizing the failure within the gage section while causing the shear stress distribution to be more uniform than in a specimen without notches. In comparison, Test Method D4255/D4255M utilizes an unnotched specimen clamped between two pairs of loading rails that are loaded in tension. Also, in contrast to Test Method D4255/D4255M, the present test method provides specimen gripping without the need for holes in the specimen. The composite materials are limited to continuous-fiber or discontinuous-fiber-reinforced composites in the following material forms: 1.1.1?Laminates composed only of unidirectional fibrous laminae, with the fiber direction oriented either parallel or perpendicular to the fixture rails. 1.1.2?Laminates of balanced and symmetric construction, with the 0? direction oriented either parallel or perpendicular to the fixture rails. 1.1.3?Laminates composed of woven, braided, or knitted fabric filamentary laminae. 1.1.4?Short-fiber-reinforced composites with a majority of the fibers being randomly distributed. 1.2?UnitsThe values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined. 1.2.1?Within the text, the inch-pound units are shown in brackets. 1.3?This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.4?This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. |
||||||||||||||||||||||||||||||||||||||||||||
2. Referenced Documents | ||||||||||||||||||||||||||||||||||||||||||||
|
Do you want to make sure you use only the valid technical standards?
We can offer you a solution which will provide you a monthly overview concerning the updating of standards which you use.
Would you like to know more? Look at this page.
Latest update: 2024-12-23 (Number of items: 2 217 157)
© Copyright 2024 NORMSERVIS s.r.o.