We need your consent to use the individual data so that you can see information about your interests, among other things. Click "OK" to give your consent.
Standard Test Method for Determination of Elements in Insulating Oils by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES)
STANDARD published on 1.11.2013
Designation standards: ASTM D7151-13
Note: WITHDRAWN
Publication date standards: 1.11.2013
SKU: NS-37688
The number of pages: 5
Approximate weight : 15 g (0.03 lbs)
Country: American technical standard
Category: Technical standards ASTM
Keywords:
aluminum, cadmium, copper, emission-spectrometry, ICP, inductively coupled plasma atomic emission spectrometry, insulating liquid, iron, lead, silicon, silver, sodium, tin, transformer oil, tungsten, wear metals, zinc, ICS Number Code 29.040.10 (Insulating oils)
Significance and Use | ||||||||||||||||
5.1 This test method covers the rapid determination of 12 elements in insulating oils, and it provides rapid screening of used oils for indications of wear. Test times approximate several minutes per test specimen, and detectability is in the 10 through 100 μg/kg range. 5.2 This test method can be used to monitor equipment condition and help to define when corrective action is needed. It can also be used to detect contamination such as from silicone fluids (via Silicon) or from dirt (via Silicon and Aluminum). 5.3 This test method can be used to indicate the efficiency of reclaiming used insulating oil. |
||||||||||||||||
1. Scope | ||||||||||||||||
1.1 This test method describes the determination of metals and contaminants in insulating oils by inductively coupled plasma atomic emission spectrometry (ICP-AES). The specific elements are listed in Table 1. This test method is similar to Test Method D5185, but differs in methodology, which results in the greater sensitivity required for insulating oil applications. 1.2 This test method uses oil-soluble metals for calibration and does not purport to quantitatively determine insoluble particulates. Analytical results are particle size dependent, and low results are obtained for particles larger than several micrometers.2 1.3 This test method determines the dissolved metals (which can originate from overheating or arcing, or both) and a portion of the particulate metals (which generally originate from a wear mechanism). While this ICP method detects nearly all particles less than several micrometers, the response of larger particles decreases with increasing particle size because larger particles are less likely to make it through the nebulizer and into the sample excitation zone. 1.4 This test method includes an option for filtering the oil sample for those users who wish to separately determine dissolved metals and particulate metals (and hence, total metals). 1.5 Elements present at concentrations above the upper limit of the calibration curves can be determined with additional, appropriate dilutions and with no degradation of precision. 1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and to determine the applicability of regulatory limitations prior to use. |
||||||||||||||||
2. Referenced Documents | ||||||||||||||||
|
Do you want to be sure about the validity of used regulations?
We offer you a solution so that you could use valid and updated legislative regulations.
Would you like to get more information? Look at this page.
Latest update: 2025-01-21 (Number of items: 2 220 867)
© Copyright 2025 NORMSERVIS s.r.o.