We need your consent to use the individual data so that you can see information about your interests, among other things. Click "OK" to give your consent.
Standard Test Method for Strain-Controlled Fatigue Testing
Translate name
STANDARD published on 1.6.2021
Designation standards: ASTM E606/E606M-21
Publication date standards: 1.6.2021
SKU: NS-1029294
The number of pages: 16
Approximate weight : 48 g (0.11 lbs)
Country: American technical standard
Category: Technical standards ASTM
Keywords:
accuracy, bending strain, cycle, cyclic strain hardening exponent, cyclic strength coefficient, cyclic stress-strain properties, extensometer, fatigue, fatigue ductility coefficient, fatigue ductility exponent, fatigue life, fatigue strength coefficient, fatigue strength exponent, fatigue testing, fatigue testing system, force, gage length, hysteresis diagram, inelastic strain, load range, plastic extension, preload, rate of straining, rate of stressing, reduced section, reduction of area
Significance and Use | ||||||||||||||||||||||||||||||||||||||||||||||
4.1?Strain-controlled fatigue is a phenomenon that is influenced by the same variables that influence force-controlled fatigue. The nature of strain-controlled fatigue imposes distinctive requirements on fatigue testing methods. In particular, cyclic total strain should be measured and cyclic plastic strain should be determined. Furthermore, either of these strains typically is used to establish cyclic limits; total strain usually is controlled throughout the cycle. The uniqueness of this test method and the results it yields are the determination of cyclic stresses and strains at any time during the tests. Differences in strain histories other than constant-amplitude alter fatigue life as compared with the constant amplitude results (for example, periodic overstrains and block or spectrum histories). Likewise, the presence of nonzero mean strains and varying environmental conditions may alter fatigue life as compared with the constant-amplitude, fully reversed fatigue tests. Care must be exercised in analyzing and interpreting data for such cases. In the case of variable amplitude or spectrum strain histories, cycle counting can be performed with Practice E1049. 4.2?Strain-controlled fatigue can be an important consideration in the design of industrial products. It is important for situations in which components or portions of components undergo either mechanically or thermally induced cyclic plastic strains that cause failure within relatively few (that is, approximately <105) cycles. Information obtained from strain-controlled fatigue testing may be an important element in the establishment of design criteria to protect against component failure by fatigue. 4.3?Strain-controlled fatigue test results are useful in the areas of mechanical design as well as materials research and development, process and quality control, product performance, and failure analysis. Results of a strain-controlled fatigue test program may be used in the formulation of empirical relationships between the cyclic variables of stress, total strain, plastic strain, and fatigue life. They are commonly used in data correlations such as curves of cyclic stress or strain versus life and cyclic stress versus cyclic plastic strain obtained from hysteresis loops at some fraction (often half) of material life. Examination of the cyclic stressstrain curve and its comparison with monotonic stressstrain curves gives useful information regarding the cyclic stability of a material, for example, whether the values of hardness, yield strength, ultimate strength, strain-hardening exponent, and strength coefficient will increase, decrease, or remain unchanged (that is, whether a material will harden, soften, or be stable) because of cyclic plastic straining 1.1?This test method covers the determination of fatigue properties of nominally homogeneous materials by the use of test specimens subjected to uniaxial forces. It is intended as a guide for fatigue testing performed in support of such activities as materials research and development, mechanical design, process and quality control, product performance, and failure analysis. While this test method is intended primarily for strain-controlled fatigue testing, some sections may provide useful information for force-controlled or stress-controlled testing. 1.2?The use of this test method is limited to specimens and does not cover testing of full-scale components, structures, or consumer products. 1.3?This test method is applicable to temperatures and strain rates for which the magnitudes of time-dependent inelastic strains are on the same order or less than the magnitudes of time-independent inelastic strains. No restrictions are placed on environmental factors such as temperature, pressure, humidity, medium, and others, provided they are controlled throughout the test, do not cause loss of or change in dimension with time, and are detailed in the data report. Note 1:?The term inelastic is used herein to refer to all
nonelastic strains. The term plastic is used herein to refer only to
the time-independent (that is, noncreep) component of inelastic
strain. To truly determine a time-independent strain the force
would have to be applied instantaneously, which is not possible. A
useful engineering estimate of time-independent strain can be
obtained when the strain rate exceeds some value. For example, a
strain rate of 1 ? 10?3 sec?1 is often used
for this purpose. This value should increase with increasing test
temperature.
1.4?This test method is restricted to the testing of uniform gage section test specimens subjected to axial forces as shown in Fig. 1(a). Testing is limited to strain-controlled cycling. The test method may be applied to hourglass specimens, see Fig. 1(b), but the user is cautioned about uncertainties in data analysis and interpretation. Testing is done primarily under constant amplitude cycling and may contain interspersed hold times at repeated intervals. The test method may be adapted to guide testing for more general cases where strain or temperature may vary according to application specific histories. Data analysis may not follow this test method in such cases. FIG. 1?Recommended Low-Cycle Fatigue Specimens Note 1:?* Dimension d is recommended to be 6.35 mm [0.25 in.].
See 7.1. Centers permissible.
** This diameter may be made greater or less than 2d depending on
material hardness. In typically ductile materials diameters less
than 2d are often employed and in typically brittle materials
diameters greater than 2d may be found desirable.
Note 2:?Threaded connections are more prone to inferior axial
alignment and have greater potential for backlash, particularly if
the connection with the grip is not properly designed.
1.5?The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. 1.6?This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. |
||||||||||||||||||||||||||||||||||||||||||||||
2. Referenced Documents | ||||||||||||||||||||||||||||||||||||||||||||||
|
Do you want to be sure about the validity of used regulations?
We offer you a solution so that you could use valid and updated legislative regulations.
Would you like to get more information? Look at this page.
Latest update: 2024-12-22 (Number of items: 2 217 000)
© Copyright 2024 NORMSERVIS s.r.o.