We need your consent to use the individual data so that you can see information about your interests, among other things. Click "OK" to give your consent.
Standard Guide for Characterization and Testing of Biomaterial Scaffolds Used in Regenerative Medicine and Tissue-Engineered Medical Products
Translate name
STANDARD published on 1.10.2019
Designation standards: ASTM F2150-19
Publication date standards: 1.10.2019
SKU: NS-975436
The number of pages: 12
Approximate weight : 36 g (0.08 lbs)
Country: American technical standard
Category: Technical standards ASTM
Keywords:
absorption, bioabsorption, biomaterials, biomedical material, bioresorption, cell seeding, matrix, porometry, porosimetry, porosity, scaffold, tissue engineering,, ICS Number Code 11.020 (Medical sciences and health care facilities in general)
Significance and Use | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5.1 Scaffolds potentially may be metallic, ceramic, polymeric, natural, or composite materials. Scaffolds are usually porous to some degree, but may be solid. Scaffolds can range from mechanically rigid to gelatinous and can be either absorbable/degradable or non-absorbable/non-degradable. The scaffold may or may not have a surface treatment. Because of this large breadth of possible starting materials and scaffold constructions, this guide cannot be considered as exhaustive in its listing of potentially applicable tests. A voluntary guidance for the development of tissue-engineered products can be found in Omstead, et al 5.2 Each TEMP scaffold product is unique and may require testing not within the scope of this guide or other guidance documents. Users of this guide are encouraged to examine the references listed herein and pertinent FDA or other regulatory guidelines or practices, and conduct a literature search to identify other procedures particularly pertinent for evaluation of their specific scaffold material 5.3 A listing of potentially applicable tests for characterizing and analyzing the materials used to fabricate the scaffold may be found in Guide F2027. However, conformance of a raw material to this and/or any other compendial standard(s) does not, in itself, ensure that the selected material is suitable or that the provided quality is adequate to meet the needs of a particular application. Thus, other characterization procedures may also be relevant and not covered by this guide. 5.4 The following provides a listing of links to U.S. Food & Drug Administration (FDA)—Center for Devices & Radiologic Health (CDRH) web sites that may potentially contain additional guidance relevant to biomaterial scaffolds covered within this document. 5.4.1 Recognized FDA-CDRH Consensus Standards Database: 5.4.1.1 http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfStandards/search.cfm 5.4.1.2 This database provides a resource for locating FDA-recognized consensus standards for medical products. 5.4.2 FDA-CDRH Good Guidance Practice (GGP) Database: 5.4.2.1 http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfggp/search.cfm 5.4.2.2 This database provides a resource for locating non-binding FDA guidance documents intended for CDRH staff, regulated industry and the public that relate to the processing, content, and evaluation of regulatory submissions, the design, production, manufacturing, and testing of regulated products, and FDA inspection and enforcement procedures. 5.4.2.3 A document within this database possessing content that warrants particular consideration for its potential applicability for tissue-engineering scaffolds is 5.4.3 FDA-CDRH Premarket Approval (PMA) Database: 5.4.3.1 http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMA/pma.cfm 5.4.4 FDA-CDRH 510(k) (Premarket Notification) Database: 5.4.4.1 http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1. Scope | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1.1 This guide is a resource of currently available test methods for the characterization of the compositional and structural aspects of biomaterial scaffolds used in the development and manufacture of regenerative medicine and tissue-engineered medical products (TEMPs). 1.2 The test methods contained herein guide characterization of the bulk physical, chemical, mechanical, and surface properties of a scaffold construct. Such properties may be important for the success of a TEMP, especially if the property affects cell retention, activity and organization, the delivery of bioactive agents, or the biocompatibility and bioactivity within the final product. 1.3 This guide may be used in the selection of appropriate test methods for the generation of an original equipment manufacture (OEM) specification. This guide also may be used to characterize the scaffold component of a finished medical product. 1.4 This guide is intended to be used in conjunction with appropriate characterization(s) and evaluation(s) of any raw or starting material(s) used in the fabrication of the scaffold, such as described in Guide F2027. 1.5 This guide addresses natural, synthetic, or combination scaffold materials with or without bioactive agents or biological activity. This guide does not address the characterization or release profiles of any biomolecules, cells, drugs, or bioactive agents that are used in combination with the scaffold, but may be used to address the effects on other (e.g., structural) properties as a result of such release. A determination of the suitability of a particular starting material and/or finished scaffold structure to a specific cell type and/or tissue engineering application is essential, but will require additional in vitro and/or in vivo evaluations considered to be outside the scope of this guide. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2. Referenced Documents | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Do you want to be sure about the validity of used regulations?
We offer you a solution so that you could use valid and updated legislative regulations.
Would you like to get more information? Look at this page.
Latest update: 2025-01-23 (Number of items: 2 221 916)
© Copyright 2025 NORMSERVIS s.r.o.