We need your consent to use the individual data so that you can see information about your interests, among other things. Click "OK" to give your consent.
Standard Practice for Conducting Wire-on-Bolt Test for Atmospheric Galvanic Corrosion
STANDARD published on 1.11.2015
Designation standards: ASTM G116-99(2015)
Note: WITHDRAWN
Publication date standards: 1.11.2015
SKU: NS-622490
The number of pages: 5
Approximate weight : 15 g (0.03 lbs)
Country: American technical standard
Category: Technical standards ASTM
Keywords:
aluminum, architectural materials, ATCORR test, atmospheric corrosion, atmospheric corrosivity, bolts, CLIMAT test, copper, corrosion, corrosion test, corrosivity, galvanic corrosion, rod, wire, wire-on-bolt test ,, ICS Number Code 25.220.40 (Metallic coatings),77.060 (Corrosion of metals)
Significance and Use | ||||||||||||||||||||
5.1 The small size of the wire compared to the short galvanic interaction distance in atmospheric exposures gives a large cathode-to-anode area ratio which accelerates the galvanic attack. The area between the wire and the threads creates a long, tight crevice, also accelerating the corrosion. For these reasons, this practice, with a typical exposure period of 90 days, is the most rapid atmospheric galvanic corrosion test, particularly compared to Test Method G104. The short duration of this test means that seasonal atmospheric variability can be evaluated. (If average performance over a 1-year period is desired, several staggered exposures are required with this technique.) Reproducibility of this practice is somewhat better than other atmospheric galvanic corrosion tests. 5.2 The major disadvantage of this test is that the anode material must be available in wire form and the cathodic material must be available in the form of a threaded rod. This should be compared to Test Method G104 where plate or sheet material is used exclusively. 5.3 An additional limitation is that the more anodic material of the pair must be known beforehand (from information such as in Guide G82) or assemblies must be made with the material combinations reversed. 5.4 The morphology of the corrosion attack or its effect on mechanical properties of the base materials cannot be assessed by this practice. Test Method G104 is preferable for this purpose. 5.5 This test has been used under the names CLIMAT and ATCORR to determine atmospheric corrosivity by exposing identical specimens made from 1100 aluminum (UNS A91100) wire wrapped around threaded rods of nylon, 1010 mild steel (UNS G10100 or G10080), and CA110 copper (UNS C11000). Atmospheric corrosivity is a function of the material that is corroding, however. The relative corrosivity of atmospheres could be quite different if a different combination of materials is chosen. |
||||||||||||||||||||
1. Scope | ||||||||||||||||||||
1.1 This practice covers the evaluation of atmospheric galvanic corrosion of any anodic material that can be made into a wire when in contact with a cathodic material that can be made into a threaded rod. 1.2 When certain materials are used for the anode and cathode, this practice has been used to rate the corrosivity of atmospheres. 1.3 The wire-on-bolt test was first described in 1955 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. |
||||||||||||||||||||
2. Referenced Documents | ||||||||||||||||||||
|
Do you want to make sure you use only the valid technical standards?
We can offer you a solution which will provide you a monthly overview concerning the updating of standards which you use.
Would you like to know more? Look at this page.
Latest update: 2024-12-22 (Number of items: 2 217 000)
© Copyright 2024 NORMSERVIS s.r.o.