We need your consent to use the individual data so that you can see information about your interests, among other things. Click "OK" to give your consent.
Standard Test Method for Measuring Rolling Friction Characteristics of a Spherical Shape on a Flat Horizontal Plane
STANDARD published on 15.11.2013
Designation standards: ASTM G194-08(2013)
Note: WITHDRAWN
Publication date standards: 15.11.2013
SKU: NS-57574
The number of pages: 9
Approximate weight : 27 g (0.06 lbs)
Country: American technical standard
Category: Technical standards ASTM
Keywords:
balls, coefficient of rolling friction, plane, rolling friction, spheres, ICS Number Code 17.040.20 (Properties of surfaces)
Significance and Use | ||||||
5.1 Rolling friction like sliding
friction depends upon many factors. It is a system effect that
involves the nature of the rolling surface and the counterface. The
sliding friction force (F) is usually
considered to be the sum of forces arising from deformations of
surface features (Fs), from
attractive forces (atomic, molecular, etc.) at contact points
(Fa) and
force from interaction of films and particulates on the rubbing
surfaces (Ff): 5.2 There are countless applications where it is important to quantify the rolling characteristics of a particular spherical shape on a particular surface. The interlaboratory tests conducted for this test method were performed on hardened steel balls like those used in ball bearings. This test method could be used to assess the effect of different counterface surfaces on the rolling characteristics of balls for ball bearings. Conversely, it could be used as a quality control test on balls. Surface imperfections/defects/films, etc. on the balls can affect how they roll: the distance traveled on a common counterface. 5.3 Industrial applications of this test method can include assessing conveying surfaces for spherical or nearly special parts: check valve balls, cabinet knobs, Christmas ornaments, toilet floats, etc. Many medical devices use special shapes where rolling characteristics are a consideration. Similarly, many pharmaceutical products (pills) are spherical or nearly spherical in shape, and this test method can be used to assess rolling characteristics for conveying or other reasons such as size (mass) check. 5.4 Rolling friction of spherical shapes can be a consideration in countless sports (soccer, golf, lacrosse, etc.) and game applications (billiards, bocce, toys, etc.). This test method can be used to rank the rolling resistance of different ball compositions, masses, shapes, surface textures, design, stiffness, etc. Similarly, the test method can be used to assess the ease of rolling of balls on different playing or game surfaces. 5.5 This test method is very applicable to spherical or mostly spherical food products. For example, it is common to use rolling distance of apples, citrus, nuts, etc. to classify them by size for marketing. They are rolled down an angled surface and the rolling distance becomes a function of size (mass/diameter). This test method can be used to assess the suitability of various rolling surfaces (carpet, metal, wood, etc.) for suitability in classification equipment. It could also be used for food conveyance on spherical-shaped processed foods (gumballs, hard candy, meatballs, etc.) 5.6 Finally, this test method can be a valuable teaching tool for physics and tribology students. The equipment is simple, low cost and student proof. It can be used to demonstrate the concept of rolling friction and the factors that affect it. |
||||||
1. Scope | ||||||
1.1 This test method covers the use of an angled launch ramp to initiate rolling of a sphere or nearly spherical shape on a flat horizontal surface to determine the rolling friction characteristics of a given spherical shape on a given surface. 1.1.1 Steel balls on a surface plate were used in interlaboratory tests (see Appendix X1). Golf balls on a green, soccer and lacrosse balls on playing surfaces, bowling balls on an a lane, basketballs on hardwood, and marbles on composite surface were tested in the development of this test method, but the test applies to any sphere rolling on any flat horizontal surface. 1.1.2 The rolling friction of spheres on horizontal surfaces is affected by the spherical shape’s stiffness, radius of curvature, surface texture, films on the surface, the nature of the counterface surface; there are many factors to consider. This test method takes all of these factors into consideration. The spherical shape of interest is rolled on the surface of interest using a standard ramp to initiate rolling and standard techniques to measure and treat the rolled distance after leaving the ramp. 1.1.3 This test method produces a rolling resistance number on a specific spherical shape on a specific surface. It is intended for comparing similar tribosystems. For example, the rolling resistances of marbles on a particular surface are not to be compared with the rolling resistance of soccer balls on grass, because their masses and diameters are very different as are the counterface surfaces on which they roll. 1.1.4 Different launch ramps for are appropriate for different types of spherical shapes. If a sphere of interest cannot be accommodated with using one of the launch ramps discussed in 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. |
||||||
2. Referenced Documents | ||||||
|
Historical
1.11.2011
Historical
1.5.2014
Historical
1.12.2013
Historical
1.5.2014
Historical
1.5.2014
Historical
1.10.2011
Do you want to make sure you use only the valid technical standards?
We can offer you a solution which will provide you a monthly overview concerning the updating of standards which you use.
Would you like to know more? Look at this page.
Latest update: 2025-01-21 (Number of items: 2 220 867)
© Copyright 2025 NORMSERVIS s.r.o.